Deep Learning for Stock Price Prediction

ITCS 6156 Machine Learning
Department of Computer Science
Under the Guidance of Dr. Minwoo Jake Lee

Jayachandra Reddy Kamineni Surya Pavan Malireddy Karthikeya Vayuputra Chittuluri
UNC Charlotte UNC Charlotte UNC Charlotte

Project code: https://drive.google.com/open?id=16tXWnR_KyZriFy1PawHGVfFLNOX5Ine8

Introduction:

In this project, we build a deep learning system to predict stock prices of next day (one step
time series forecast) and also for a specific period of time (multi-step time series forecast).
Stock traders analyze various patterns in the stock market in order to make their investment
decisions. Using this system, stock traders can automate their process of decision making.
Predicting Stock prices can be achieved using deep learning models like LSTM (Long Short-Term
Memory Networks), GRU (Gated Recurrent Unit), CNN (Convolutional Neural Network) plus
LSTM models because of their ability to remember past information. We solved this project
using two approaches.

1) One step prediction takes the test set until the previous day and predicts the next price.

2) Multistep prediction starts with the first window in the test set, predicts next price, then
pops out the oldest price in the window, appends the predicted price and predicts the next
price on this new window for a specified period.

Related work:

We studied few research papers on time series forecasting problems using Deep learning. Their
work has inspired us to take up this problem. Research work [1] by Lilian Weng implemented
the RNN model with LSTM cells to predict the prices. She used Sliding window approach and
used values in one window to calculate the values of the next window without any overlap.

As shown above all the values from beginning till w(t) window are used to predict w(t+1).
Research paper[2] implemented stock price prediction using RNN, LSTM, CNN - Sliding window
model to understand the dynamics of data. They compared the results of three models using
error percentage and found that CNN model was performing better compared to RNN, LSTM.

https://drive.google.com/open?id=16tXWnR_KyZriFy1PawHGvfFLN0x5Ine8

(window sliding ...) use wt to predict wt+1

el Wt [Wit
2200
2000 1
1800 1
—»
1600 <, ; : .
m m = <t i n o o P=
-~ — - — ~ - —~ — -
(=] o (=1 o o o o (=] o
™~ ™~ ™~ ™~ ™~ ™~ ~ ™~ ~
c (Y] c v (= o e (] c
= [T 2 @ = 7 = P -]
3 8 3 & 3 g 3 g =S
D

ate

From this research, they proposed the reason that as CNN does not depend on any previous
information for prediction and it uses only current window information, this enabled the CNN
model to understand the dynamical changes and patterns occurring in the current window to
accurately predict the stock. Whereas RNN, LSTM uses information from previous lags to
predict the future instances. Since the stock market is a highly dynamical system, the patterns
and

dynamics existing within the system will not always be the same. Above two research works has
greatly inspired us to explore the research area of building CNN architecture which is proven to
be best in identifying the patterns in the current window over LSTM architecture which works
best in predicting future instances using previous lags.

DATASET:

We used Stock time series data from Alpha Advantage API's. It consists of High, Low, Open,
Close prices and Trading Volume for each day. We pulled stock price data of Google from
8/19/2004 to 11/02/2018. It has 3579 rows and 5 columns.
Features:
1. High: Highest price reached on that day by stock
Low: Lowest price reached on that day by stock
Open: Opening price of the stock on that day
Close: Closing price of the stock on that day
Trading volume: Number of shares that changed hands on that day

v s W

https://www.alphavantage.co/documentation/

Sample data:

‘timestamp open

- 11/2/2018
- 11/1/2018
110/31/2018
110/30/2018
110/29/2018
110/26/2018

1089
1091.4
1068.2

1020.01
1096.54
1048.33

high low
1098 1067.66
1099.9 1077.82
1108 1068.2
1050.9 1013.97
1108.83 1007.2
1117 1042.23

close
1071.49
1085.98
1090.58
1049.51
1034.73
1083.75

volume
2172215
2006575
3545821
2988418
4064452
5321883

Out of these five features, we have used open price feature to predict future prices. We
normalized our data using min-max normalization so that the mean of the data is 0 and

variance is 1. Finally, the company’s stock prices are split into 60-day windows for training and

testing.

Methods:

1. LSTM (Long Short-Term Memory Networks):
Structure of a single LSTM node :

b 4

Y

0

Output
Gate

LSTM Unit

Each LSTM node has a cell state which stores the information. The information stored in it is

controlled by three gates :

a. Forget gate: The first state in the LSTM is to identify that information that is not

required and will be thrown away from the cell state. This decision is made by a sigmoid

layer called as a forget gate layer.

b. Input gate: The next step is to decide, what new information we are going to store

in the cell state. A sigmoid layer called the 'Input gate' layer decides which values

be updated. A 'tanh ' layer creates a vector of new candidate values, that could be

added to the state.

c. Output gate: the output gate is a sigmoid layer which decides which parts of the cell

state need to be included in the output of the LSTM node.

The LSTM Architecture which we have implemented is as follows :

= . = Feed Forward NN
Data I:/,\ E |:> 5 (Dense)

LSTM Architecture

Dropout

= Output

As RNNs are successful in dealing with sequential data, we implemented the LSTM model in our
predictions. In our model, we used 3 LSTM layers each with 50 units and connected to 2 dense
layers. We used 100 epochs with MeanSquaredError as our loss function and Adam as the

optimizer.

2. GRU
Structure of Single GRU node:

Lo]
IF

tanh

by

oy

|1—zl

*

Gated Recurrent Unit

()

“plus™ operation “sigmoid™ function

“Hadamard product™ operation

tanh

“tanh” function

To solve the vanishing gradient problem of a standard RNN, GRU uses, so-called, update gate
and reset gate. Basically, these are two vectors which decide what information should be
passed to the output. The special thing about them is that they can be trained to keep
information from long ago, without washing it through time or remove information which is

irrelevant to the prediction.

a.Update gate: The update gate helps the model to determine how much of the past
information (from previous time steps) needs to be passed along to the future.

b. Reset gate: this gate is used from the model to decide how much of the past information to

forget.

The GRU Architecture we have used is as follows:

Data ::> I:‘>

GRU
I
GRU

Feed Forward NN
(Dense)

=

GRU Architecture

Dropout

— Output

As RNNs are successful in dealing with sequential data, we implemented the GRU model in our
predictions. In our model, we used 2 GRU layers each with 50 units and connected to 2 dense
layers. We used 100 epochs with MeanSquaredError as our loss function and Adam as the

optimizer.

3.CNN - LSTM:

The CNN LSTM Architecture which we have implemented is as follows :

l
CNN

I
LSTM

!
LSTM

Data

Feed Forward NN
(Dense)

CNN - LSTM Architecture

Dropout

Ij

In our model, we used 3 Conv 1D layers each with 16 filters, 60 filter length, connected to 2

LSTM layers each with 150 units and connected to 4 dense layers. We used MeanSquaredError

as our loss function and Adam as the optimizer.

Experiments/Results:

Hyper-Parameter tuning:

We performed Hyperparameter tuning by changing the number of layers, dense layers, epochs,

batch size, units in each cell(LSTM/GRU), optimizer, activation functions in each model.

LSTM:

Below are the hyperparameters we have tried changing to obtain the optimum model. We

experimented with different number of LSTM layers(n =1,2,3,4,5), number of hidden units as

50, number of epochs as (40,60,100), batch size as 256. Below are the results we got for each
parameter during tuning. The number of LSTM layers had a lot of impact on the results while
other parameters did not affect the performance much.

GRU:

To optimize our GRU model, we experimented with different number of GRU layers(n
=1,2,3,4,5), number of hidden units as 50, number of epochs as (40,60,100), batch size as 256.
Below are the results of the model for number layers we changed. Other parameters did not
have much effect on performance.

CNN LSTM:

To optimize the CNN - LSTM model, we experimented with different combinations of Conv 1D,
LSTM layers with a number of epochs as (40,60,100,200), batch size as 50, 100, 256. We also

performed Hyperparameter tuning by changing the filter length, number of filters in CNN

layers.

Hyper-parameter results:

LSTM - Epochs:100, Batch size:256, Optimizer: Adam,Activation : Relu ,Loss: MSE, Units:50
CNN LSTM — Epochs: 200, Batch size:50, Optimizer: Adam, Activation : Relu,Loss: MSE,

Units:50,150,250.

GRU - Epochs: 90, Batch 256, Optimizer :Adam ,Activation : Relu,Loss:MSE, Units: 50

LSTM
Layers 1 2 3 4 5
RMSE 29.56 30.806 28.38 32.38 35.068
F1 Score 0.407 0.333 0.415 0.392 0.392
Accuracy 0.515 0.515 0.53 0.53 0.53
CNN LSTM
Layers 3 ConvlD, 1 4 ConvlD, 3 3 ConvlD, 2 4 ConvlD, 2 3 ConvlD, 3
LSTM LSTM LSTM LSTM LSTM
RMSE 89.33 131.41 65.56 116.4 102
F1 Score 0.515 0.514 0.483 0.532 0.516
Accuracy 0.447 0.386 0.418 0.459 0.463

GRU

Layers 1 2 3 4 5
RMSE 123.82 22.632 30.459 27.84 34.25
F1 Score 0.516 0.413 0.436 0.436 0.436
Accuracy 0.545 0.484 0.530 0.530 0.530
Google Stock Price Prediction Google Stock Price Prediction
1400 1400
—— Real Google Stock Price = Real Google Stock Price
- Predicted Google Stock Price - One step time series forecast —— Predicted Google Stock Price - One step fime series forecast
1300 Predicted Google Stock Price - Multistep time series forecast 1300 Predicted Google Stock Price - Multistep time series forecast
1200 1200
g 2
T 1100 8 10
8 <
7] in
% 1000 < 1000
g g
0 [}
€00 00
00 0
00

Prediction using LSTM

Time

Prediction using CNN-LSTM

Google Stock Price Prediction
1400
- Real Google Stock Price
— Predicted Google Stock Price - One step time series forecast

1300 Predicted Google Stock Price - Multistep time series forecast

1200
@
<2

A 1100
e
o
2
wn

= 1000
(=1
o
(]

900

800

700

i M v e I M L L e TR e e ek T ‘s‘{l‘_\a-m,mm W‘W i
Time
Prediction using GRU
Analysis:

Overall, analyzing the performance of the above three models Day by Day prediction seems to
work better. Sequence predictions did not work well in predicting the pattern. It showed
downward movement even there is an upward trend.

Increasing number of layers by a large value did not improve the model performance.

Batch size did not have much effect on RMSE so we choose 256 to reduce training time.
Similarly, we choose the number of epochs as 100 to balance RMSE and training time.

Comparison between the model used by research papers we followed and

model implemented in this project:

We combined the ideas from 3 research papers and implemented in this project. We developed
one step and multistep(30 days) time series prediction models using 3 different models
whereas In research paper[1] they predicted prices of next window using the previous window
using LSTM model. We used the idea of a sliding window approach from their paper. In the
research paper[2] they have built 3 models LSTM, RNN, and CNN without using a sliding
window approach in understanding the dynamics of data and reported CNN worked best by
comparing error percentages. The research paper[3] implemented LSTM and GRU neural
network methods for traffic flow prediction. That was the first time GRU is applied to traffic

flow prediction. From the above two papers. We combined the ideas of the above three papers
in building three models and comparing the results. We reported RMSE value of 22.632 for
GRU model and CNN LSTM was not able to perform as expected.

Conclusion and Future work:

We worked on predicting stock price patterns using 3 different approaches. GRU worked better
in predicting day by day stock prices and LSTM worked better in sequence stock price
movements.

For future work, we are planning to make a data stationary before feeding into the deep
learning algorithms that may improve the results of multi-step prediction. We are also looking
forward to including Text analytics strategies of Topic modeling, Sentiment analysis on News
data related to Google for predicting better future because News, textual data on the web plays
a crucial role for changes in stocks. We also wanted to make changes in our sliding window
approach as stock prices maintain long-term dependencies sliding window of 30 days may not
be sufficient in predicting 30 days into future.

Throughout this project, we learned various aspects of how time series data can be handled
using Deep learning models. We learned to build Deep learning models and how each factor/
parameter affects the performance of models.

Response to feedback:

Exploratory Data Analysis has been performed to understand the trend followed by Google
stock prices. We checked for the seasonality present in the data. We were not able to present
actual dates on the x-axis as dates were overlapping with each other. EDA has also been
performed to check if the data is stationary or not. Yes, the approach we have followed is
Seq2Seq prediction model. Each window in our model is a sequence with 60-time steps and
output is a sequence with one-time step.

From our research, we found that everyone has tried solving this problem using LSTM, CNN
alone and they have made a comparison between them. But in our model, we have combined
both the architectures to see if it can improve the results and also built models of LSTM, GRU
separately. We compared the results of the 3 models we built and also compared with the
results of the research papers we have followed. Another unique problem we have tried solving
is predicting multi-steps into future and see which model has better scope in predicting 30 days
into future. From the plots above we can see that LSTM model has better scope for predicting
multisteps into future. Also from our findings, we have not seen anyone implementing GRU
architecture in predicting stock prices or time series financial data. GRU architecture worked
best in predicting one step ahead among the 3 models we built.

Team Roles and Contributions:

Team Members Responsible For
1. Jayachandra Reddy Kamineni - Project research, documentation
801046554 - EDA and pre-processing

- Modeling using LSTM, CNN -LSTM, GRU
- Evaluation Metrics and Tuning the Models

2. Surya Pavan Malireddy - Project research, documentation
801042753 - EDA and pre-processing

- Modeling using CNN -LSTM, GRU

- Evaluation Metrics and Tuning the Models

3. Karthikeya Vayuputra Chittuluri - Project research, documentation
801046118 - EDA and pre-processing

- Modeling using LSTM, GRU

- Evaluation Metrics and Tuning the Models

References:
1. https://lilianweng.github.io/lil-log/2017/07/08/predict-stock-prices-using-RNN-part-1.ht
ml
2. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8126078
3. https://ieeexplore.ieee.org/abstract/document/7804912
4. http://cs230.stanford.edu/files_winter_2018/projects/6906443.pdf
5. http://cs230.stanford.edu/files_winter_2018/projects/6940337.pdf

https://lilianweng.github.io/lil-log/2017/07/08/predict-stock-prices-using-RNN-part-1.html
https://lilianweng.github.io/lil-log/2017/07/08/predict-stock-prices-using-RNN-part-1.html
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8126078
https://ieeexplore.ieee.org/abstract/document/7804912
http://cs230.stanford.edu/files_winter_2018/projects/6906443.pdf
http://cs230.stanford.edu/files_winter_2018/projects/6940337.pdf

